Насосы и Насосное оборудование

Насос — гидравлическая машина, преобразующая механическую энергию приводного двигателя или мускульную энергию (в ручных насосах) в энергию потока жидкости, служащую для перемещения и создания напора жидкостей всех видов, механической смеси жидкости с твёрдыми и коллоидными веществами или сжиженных газов[1]. Разность давлений жидкости на выходе из насоса и присоединённом трубопроводе обусловливает её перемещение.

Классификация насосов по принципу действия

По характеру сил преобладающих в насосе: объёмные, в которых преобладают силы давления, и динамические, в которых преобладают силы инерции.

По характеру соединения рабочей камеры с входом и выходом из насоса: периодическое соединение (объёмные насосы) и постоянное соединение входа и выхода (динамические насосы).

Объёмные насосы используются для перекачки вязких жидкостей. В этих насосах одно преобразование энергии — энергия двигателя непосредственно преобразуется в энергию жидкости (механическая => кинетическая + потенциальная). Это высоконапорные насосы, они чувствительны к загрязнению перекачиваемой жидкости. Рабочий процесс в объёмных насосах неуравновешен (высокая вибрация), поэтому необходимо создавать для них массивные фундаменты. Также для этих насосов характерна неравномерность подачи. Большим плюсом таких насосов можно считать способность к сухому всасыванию (самовсасыванию).

Для динамических насосов характерно двойное преобразование энергии (1 этап: механическая → кинетическая + потенциальная; 2 этап: кинетическая → потенциальная). В динамических насосах можно перекачивать загрязнённые жидкости, они обладают равномерной подачей и уравновешенностью рабочего процесса. В отличие от объёмных насосов, они не способны к самовсасыванию.

Объёмные насосы

Процесс объёмных насосов основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. Некоторые виды объёмных насосов:

  • Импеллерные насосы — обеспечивают ламинарный поток перекачиваемого продукта на выходе из насоса и могут использоваться в качестве дозаторов. Могут быть изготовлены в пищевом, маслобензостойком и кислотощёлочестойком исполнении
  • Пластинчатые насосы — обеспечивают равномерное и спокойное всасывание перекачиваемого продукта на выходе из насоса, могут использоваться для дозирования. Могут быть как регулируемыми, так и нерегулируемыми. В пластинчатых регулируемых насосах изменение подачи осуществляется за счёт изменения объёма рабочей камеры благодаря изменению эксцентриситета ротора и статора. В качестве регулирующего устройства применяются гидравлические и механические регуляторы.
  • Винтовые насосы — обеспечивают ровный поток перекачиваемого продукта на выходе из насоса, могут использоваться для дозирования
  • Поршневые насосы могут создавать весьма высокое давление, плохо работают с абразивными жидкостями, могут использоваться для дозирования
  • Перистальтические насосы создают невысокое давление, химически инертны, могут использоваться для дозирования
  • Мембранные насосы — создают невысокое давление, могут использоваться для дозирования

Общие свойства объёмных насосов:

  • Цикличность рабочего процесса и связанные с ней порционность и пульсации подачи и давления. Подача объёмного насоса осуществляется не равномерным потоком, а порциями.
  • Герметичность, то есть постоянное отделение напорной гидролинии от всасывающей (лопастные насосы герметичностью не обладают, а являются проточными).
  • Самовсасывание, то есть способность объёмных насосов создавать во всасывающей гидролинии вакуум, достаточный для подъёма жидкости вверх во всасывающей гидролинии до уровня расположения насоса(лопастные насосы не являются самовсасывающими).
  • Независимость давления, создаваемого в напорной гидролинии, от подачи жидкости насосом

Динамические насосы

Динамические насосы подразделяются на:

  • Лопастные насосы, рабочим органом у которых служит лопастное колесо или мелкозаходный шнек. В них входят:
    • Центробежные, у которых преобразование механической энергии привода в потенциальную энергию потока происходит вследствие центробежных сил, возникающих при взаимодействии лопаток рабочего колеса с жидкостью. Центробежные насосы подразделяют на:
      • Центробежно-шнековый насос — вид центробежного насоса с подводом жидкости к рабочему органу выполненному в виде мелкозаходного шнека большого диаметра (дисков), расположенному по центру, с выбросом по касательной вверх или бок от корпуса. Такие насосы способны перекачивать карамелизующиеся и склеивающиеся массы, типа клея
      • Консольный насос — вид центробежного насоса с односторонним подводом жидкости к рабочему колесу, расположенному на конце вала, удалённом от привода.
      • Радиальные насосы, рабочими органами которых служат радиальные рабочие колеса. Тихоходные одноступенчатые и многоступенчатые насосы с высокими значениями напора при низких значениях подач.
    • Осевые (пропеллерные) насосы, рабочим органом которых служит лопастное колесо пропеллерного типа. Жидкость в этих насосах перемещаются вдоль оси вращения колеса. Быстроходные насосы с высоким коэффициентом быстроходности, характеризуются большими значениями подач, но низких значениях напора.
      • Полуосевые (диагональные, турбинные) насосы, рабочим органом которых служит полуосевое (диагональное, турбинное) лопастное колесо.
  • Вихревые насосы — отдельный тип лопастных насосов, в которых преобразование механической энергии в потенциальную энергию потока (напор) происходит за счёт вихреобразования в рабочем канале насоса.
  • Струйные насосы, в которых перемещение жидкости осуществляется за счёт энергии потока вспомогательной жидкости, пара или газа (нет подвижных частей, но низкий КПД).
  • Тараны (гидротараны), использующие явление гидравлического удара для нагнетания жидкости (минимум подвижных частей, почти нет трущихся поверхностей, простота конструкции, способность развивать высокое давление на выходе, низкие КПД и производительность).

Насосное оборудование.

Насосное оборудование используется во всех отраслях промышленности, сельского хозяйства и строительства. Все насосное оборудование, предназначенное для перекачивания жидкости, можно подразделить на два вида в зависимости от характера воздействия рабочих органов насоса на жидкость: насосы динамические и насосы объемные. Насос представляет собой гидравлическую машину, преобразующую механическую энергию приводного двигателя в энергию жидкости и, тем самым, создающую поток жидкой среды.

Динамический насос, это насос, в котором жидкая среда перемещается под силовым воздействием на нее рабочего органа (колеса) в камере, постоянно сообщается со входом и выходом насоса.

Центробежный насос — это лопастной динамический насос, в котором жидкая среда перемещается через рабочее колесо от центра к периферии, в осевом насосе — в направлении оси колеса.

Вихревой насос — это динамический насос трения, в котором жидкая среда перемещается по периферии рабочего колеса. В насосах объемного типа жидкая среда перемещается путем периодического изменения объема занимаемой ею камеры, попеременно сообщающейся со входом и выходом насоса.

Насосы и Насосное оборудованиеПо конструктивному признаку объемные насосы делятся на:

  • насосы с вращательным движением рабочего органа — роторные, к которым относятся насосы шестеренные, винтовые (одно-, двух- и трехвинтовые), коловратные, шланговые, оксиальнопоршневые и шиберные,
  • насосы с возвратно-поступательным движением рабочего органа, к которым относятся насосы приводные поршневые, дозировочные, паровые поршневые, диафрагменные, скважинные штанговые (станки-качалки), ручные.

Исходя из функционального назначения насоса, его определяющими техническими характеристиками являются подача и напор (давление). Все насосное оборудование первоочередно характеризуется этими параметрами.

Подача — это объем жидкости, подаваемой насосом в единицу времени, выраженной в куб.м/час (кубометров в час) или л/сек. (литров в секунду). Обозначается «Q».

Напор — это разность удельных энергий жидкости в сечениях после и до насоса, выраженная в метрах водного столба. Обозначается «Н». В насосах объемного типа пользуются понятием «давление», выраженным в атмосферах (кГс/кв.см) или в мегапаскалях (МПа) (один мегапаскаль для инженерных расчетов принят равным 10 атмосферам). Обозначается «Р». Отсюда вытекает классическая «напорная» характеристика насоса, в которой по оси абсцисс откладывается подача, а по оси ординат — напор для динамических насосов и, наоборот, для насосов объемного типа. Напорная характеристика отражает основные потребительские свойства насоса. Выбор насоса начинается с подбора требуемого напора (давления) и подачи.

Важным гидравлическим параметром насоса является допускаемая вакуумметрическая высота всасывания Нвд, характеризующая нормальные условия подхода жидкости к рабочему колесу, при которых обеспечивается работа насоса без изменения основных технических показателей. Эта величина выражается в метрах водяного столба. Благоприятные условия подхода перекачиваемой жидкости к рабочему органу насоса обеспечиваются в том случае, когда перепад давления жидкости между свободной поверхностью резервуара (водоема) и осью рабочего органа достаточен для преодоления жидкостью расстояния между свободной поверхностью резервуара и осью рабочего органа (геометрическая высота всасывания Hs) с учетом потерь на всасывающей линии и наличия скоростного напора на входе в насос (вакуумметрическая высота всасывания Нв). Нв определяется по показанию вакуумметра. При превышении допускаемой высоты всасывания Нвд на работающем насосе происходит вскипание перекачиваемой жидкости, образование пузырьков, которые при попадании их в зону повышенного давления вызывают серию местных (локальных) гидравлических ударов, называемых кавитацией.

Всасывающие свойства конкретного насоса зависят от давления окружающей среды, давления на входе в насос, скорости жидкой среды на входе, ее плотности и вязкости, а также от давления паров жидкости.

Как и всякую машину, насосный агрегат характеризует потребляемая мощность, определяющая выбор комплектующего двигателя. Величина необходимой мощности насоса находится в зависимости от величины напора и подачи, плотности и вязкости перекачиваемой жидкости (с повышением удельного веса и увеличением вязкости возрастает потребляемая мощность).

Разброс номинальных величин коэффициента полезного действия КПД насосных агрегатов велик (от 20% до 80%). Столь существенный разброс по КПД определяется разным характером взаимодействия рабочего органа с жидкостью. Общая закономерность: динамические насосы значительно уступают по этому параметру насосам объемного типа. Значимость этого параметра для больших насосов велика.